Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001

Optical Transitions in Non-Stoichiometric LaMnO $_3$ Identifying Charge Transfer Transitions *

N.N. Kovaleva¹, J. Gavartin², A.V. Boris¹, and A. M. Stoneham²

- ¹ Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Moscow distr., 142432, RUSSIA
- ² University College London, Gower Street, London WC1E 6BT, UK

Self-trapping of charge carriers is always associated with photo-induced charge transfer (CT) transitions. Using the Mott-Littleton approach we calculate energies of the main CT transitions involving $\mathrm{Mn^{4+}}$ and $\mathrm{O^{-}}$ localized holes, which determine specific electronic transport properties of doped CMR materials of $\mathrm{La_{(1-x)}A_{x}MnO_{3}}$ (where A - divalent alkaline-earth ions). In these calculations extensive use is made of results on in-crystal ionization potentials of $\mathrm{Mn^{3+}}$ and $\mathrm{O^{2-}}$ ions from a companion paper*. Our Mott-Littleton calculations predict energies for the main optical bands, which match these observed in the experimental optical conductivity spectrum near 2.3, 5 and 9 eV in the LaMnO₃ crystal. Experimental low-energy optical conductivity bands well agree with our calculated CT transitions involving $\mathrm{Mn^{4+}}$ and $\mathrm{O^{-}}$ localized holes. The reasonable agreement with experiment of our predicted energies, linewidth and oscillatior strength leads us to plausible assignment of the optical bands observed.

* N.N. Kovaleva, J. Gavartin, A. Shluger, A.V. Boris, and A. M. Stoneham, "Formation and Relaxation Energies of Electronic Holes in LaMnO₃ Crystal"

^{*}This work was supported by the Royal Society/NATO